- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)如图所示,桶1中的水按一定规律流入桶2中,已知开始时桶1中有
升水,桶2是空的,
分钟后桶1中剩余的水量符合指数衰减曲线
(其中
是常数,
是自然对数的底数).假设在经过5分钟时,桶1和桶2中的水恰好相等.求:

(1)桶2中的水
(升)与时间
(分钟)的函数关系式;
(2)再过多少分钟,桶1中的水是
升?






(1)桶2中的水


(2)再过多少分钟,桶1中的水是

(本小题满分12分)如图,有一矩形钢板
缺损了一角,边缘线
上每一点到点
的距离都等于它到边
的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若
,
,为了方便,如图建立直角坐标系,问如何画切割线
可使剩余部分五边形
的面积最大?










在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚_________________元钱.
(本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度
(单位:毫克/立方米)随着时间
(单位:天)变化的函数关系式近似为
,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒
个单位的去污剂,要使接下来的4天中能够持续有效去污,试求
的最小值(精确到
,参考数据:
取
).



(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒





把物体放在冷空气中冷却,如果物体原来的温度是
,空气的温度是
,
后物体的温度
可由公式
求得.把温度是
的物体,放在
的空气中冷却
后,物体的温度是
,那么
的值约等于_________.(保留三位有效数字,参考数据:
取
,
取
)
















某小型餐馆一天中要购买
,
两种蔬菜,
,
蔬菜每公斤的单价分别为2元和3元.根据需要
蔬菜至少要买6公斤,
蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,
,
两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?







