- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系式可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为300元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?



(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备
年的年平均污水处理费用为
(单位:万元)
(1)用
表示
;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。


(1)用


(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
时,
的值为2千克/年;当
时,
是
的一次函数;当
时,因缺氧等原因,
的值为0千克/年.
(1)当
时,求
关于
的函数表达式.
(2)当养殖密度
为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.









(1)当



(2)当养殖密度

某商品在近30天内每件的销售价格
(元)与时间
(天)的函数关系是
,该商品的日销售量
(件)与时间
(天)的函数关系是
.求这种商品的日销售金额
的最大值,并指出日销售金额最大的一天是30天中的第几天?(注:日销售金额=日销售价格×日销售量)







提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
如图,
为信号源点,
、
、
是三个居民区,已知
、
都在
的正东方向上,
,
,
在
的北偏西45°方向上,
,现要经过点
铺设一条总光缆直线
(
在直线
的上方),并从
、
、
分别铺设三条最短分支光缆连接到总光缆
,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/
,设
,(
),铺设三条分支光缆的总费用为
(元).

(1)求
关于
的函数表达式;
(2)求
的最小值及此时
的值.

























(1)求


(2)求


《郑州市城市生活垃圾分类管理办法》已经政府常务会议审议通过,自2019年12月1日起施行.垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.所谓垃圾其实都是资源,当你放错了位置时它才是垃圾.某企业在市科研部门的支持下进行研究,把厨余垃圾加工处理为一种可销售的产品.已知该企业每周的加工处理量最少为75吨,最多为100吨.周加工处理成本y(元)与周加工处理量x(吨)之间的函数关系可近似地表示为
,且每加工处理一吨厨余垃圾得到的产品售价为16元.
(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?
(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?

(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?
(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?
这是今年双十一的两道题目,第一题是双十一之前网上流传甚广的小明买卫衣问题,第二题是有关某老师的双十一战果.
(1)小明想在双十一买价值399的卫衣,已知付定金20元有订金三倍膨胀活动,但仅限当天0到2点,2点以后订金可抵用50元,但有付尾款前500名免定金活动,同时该店铺有399减20和299减10的优惠券(其使用门槛是订金
尾款
订金膨胀优惠金额大于等于优惠券),还有一种379减20和279减10的折扣券(其使用门槛是尾款
膨胀优惠金额大于等于折扣券面额),优惠和折扣只能选一种,求小明最低多少钱能买到这件卫衣?如果你是小明,你会选择怎样购买?
(2)某老师在双十一前花1元,抢到了某商家满
的一张优惠券,该商家没有订金膨胀活动,但该商家有多买多优惠活动:满3件9折,5件8折,10件及以上7折,同时可用淘宝
的购物津贴(可跨店满减,店铺优惠后参加该活动,但运费不在其中),现已知该老师本单共花了
元(1是买券钱,119.78是双十一付款,其中含运费6元).
请问:该老师本次购买的商品价值最低多少?最高多少?(按商家标示的淘宝价格计算,精确到元即可,已知该老师用了
券)
(1)小明想在双十一买价值399的卫衣,已知付定金20元有订金三倍膨胀活动,但仅限当天0到2点,2点以后订金可抵用50元,但有付尾款前500名免定金活动,同时该店铺有399减20和299减10的优惠券(其使用门槛是订金



(2)某老师在双十一前花1元,抢到了某商家满



请问:该老师本次购买的商品价值最低多少?最高多少?(按商家标示的淘宝价格计算,精确到元即可,已知该老师用了

光线通过一块玻璃,强度要损失10%,设光线原来的强度为k,通过x块这样的玻璃以后强度为y.
(1)写出y关于x的函数解析式;
(2)通过20块这样的玻璃后,光线强度约为多少?(参考数据:
)
(1)写出y关于x的函数解析式;
(2)通过20块这样的玻璃后,光线强度约为多少?(参考数据:
