- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年10月24日,世界上最长的跨海大桥一港珠澳大桥正式通车
在一般情况下,大桥上的车流速度
单位:千米
时
是车流密度
单位:辆
千米
的函数
当桥上的车流密度达到220辆
千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20辆
千米时,车流速度为100千米
时,研究表明:当
时,车流速度v是车流密度x的一次函数.
Ⅰ
当
时,求函数
的表达式;
Ⅱ
当车流密度x为多大时,车流量
单位时间内通过桥上某观测点的车辆数,单位:辆
时
可以达到最大?并求出最大值.





















在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数近似地表示这些数据的规律,其中最接近的一个是( )
x | 1.992 | 3 | 4 | 5.15 | 6.126 |
y | 1.517 | 4.0418 | 7.5 | 12 | 18.01 |
A.![]() | B.![]() | C.![]() | D.![]() |
据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与第x年近似满足关系
,观测发现2012年冬(作为第1年)有越冬白鹤3000只,估计到2018年冬有越冬白鹤( )

A.4000只 | B.5000只 | C.6000只 | D.7000只 |
国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按
征税.有一公司的实际缴税比例为
,则该公司的年收入是( )


A.560万元 | B.420万元 | C.350万元 | D.320万元 |
某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益,每件售价应降低的价格为( )
A.2元 | B.2.5元 |
C.1元 | D.1.5元 |
如图1,一个铝合金窗是由一个框架和部分外推窗框组成,其中框架设计如图2,其结构为上、下两栏,下栏为两个完全相同的矩形,四周框架和中间隔栏的材料为铝合金,宽均为
,上栏和下栏的框内矩形高度(不含铝合金部分)比为
,此铝合金窗占用的墙面面积为
,设该铝合金窗的宽和高分别
,
,铝合金的透光部分的面积为
(外推窗框遮挡光线部分忽略不计).

(1)试用
,
表示
;
(2)若要使
最大,则铝合金窗的宽和高分别为多少?







(1)试用



(2)若要使

某公司一年购买某种货物
吨,每次都购买
吨,运费为
万元/次,一年的总存储费用为
万元,若要使一年的总运费与总存储费用之和最小,则每次需购买 吨.




某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似表示为
,已知此生产线年产量最大为210吨,若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金
元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用
表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?


(1)求函数

(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?