- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为函数模型.
某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足
(注:总收益=总成本+利润)
(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?

(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?
为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
上市时间x天 | 1 | 2 | 6 |
市场价y元 | 5 | 2 | 10 |
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
为了落实国务院“提速降费”的要求,某市移动公司欲下调移动用户消费资费.已知该公司共有移动用户10万人,人均月消费50元.经测算,若人均月消费下降x%,则用户人数会增加
万人.
(1)若要保证该公司月总收入不减少,试求x的取值范围;
(2)为了布局“5G网络”,该公司拟定投入资金进行5G网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x的值.
(总盈利资金=总收入资金-总投入资金)

(1)若要保证该公司月总收入不减少,试求x的取值范围;
(2)为了布局“5G网络”,该公司拟定投入资金进行5G网络基站建设,投入资金方式为每位用户月消费中固定划出2元进入基站建设资金,若使该公司总盈利最大,试求x的值.
(总盈利资金=总收入资金-总投入资金)
下表表示的是某款车的车速与刹车距离的关系,试分别就
,
,
三种函数关系建立数学模型,并探讨最佳模拟,根据最佳模拟求车速为120km/h时的刹车距离.



车速/(km/h) | 10 | 15 | 30 | 40 | 50 |
刹车距离/m | 4 | 7 | 12 | 18 | 25 |
车速/((km/h) | 60 | 70 | 80 | 90 | 100 |
刹车距离/m | 34 | 43 | 54 | 66 | 80 |
工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月份、2月份生产该产品分别为1万件、1.5万件.则此工厂3月份生产该产品的产量为________ 万件.
某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为( )
A.200本 | B.400本 | C.600本 | D.800本 |
有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形
如图所示
,则围成场地的最大面积为______
围墙厚度不计
.





某人2010年1月1日到银行存入一年期存款a元,若年利率为x,并按复利计算,到2017年1月1日可取款(不计利息税)( )
A.![]() | B.![]() | C.![]() | D.![]() |