- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量
千克/升与时间
小时间的关系为
,如果在前5个小时消除了10%的污染物,
(1)10小时后还剩百分之几的污染物
(2)污染物减少50%需要花多少时间(精确到1小时)参考数据:
,



(1)10小时后还剩百分之几的污染物
(2)污染物减少50%需要花多少时间(精确到1小时)参考数据:


安徽怀远石榴(Punicagranatum)自古就有“九州之奇树,天下之名果”的美称,今年又喜获丰收.怀远一中数学兴趣小组进行社会调查,了解到某石榴合作社为了实现
万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过
万元时,按销售利润进行奖励,且奖金
(单位:万元)随销售利润
(单位:万元)的增加而增加,但奖金总数不超过
万元,同时奖金不能超过利润的
.同学们利用函数知识,设计了如下函数模型,其中符合合作社要求的是( )(参考数据:
)







A.![]() | B.![]() | C.![]() | D.![]() |
意大利著名科学家伽利略说:“给我空间,时间以及对数,我就可以创造一个宇宙”.他把对数与最宝贵的时间和空间相提并论,可见对数在人类科学史上是多么重要.在不考虑空气阻力的条件下,火箭的最大速度v m/s和燃料的质量M kg、火箭(除燃料)的质量m kg满足函数关系
.当燃料质量是火箭质量的_______倍时,火箭最大速度可达12 km/s. (
,结果保留整数)


某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为
元(每枚的销售价格应为正整数).
(1)写出该特许专营店一年内销售这种纪念章所获得的利润
(元)与每枚纪念章的销售价格
的函数关系式;
(2)当每枚纪念章销售价格
为多少元时,该特许专营店一年内利润
(元)最大,并求出这个最大值;

(1)写出该特许专营店一年内销售这种纪念章所获得的利润


(2)当每枚纪念章销售价格


“弯弓射雕”描述的是游牧民族的豪迈气氛,当弓箭以每秒a米的速度从地面垂直向上射箭时,t秒时弓箭距离地面的高度为x米,可由
确定,已知射箭3秒时弓箭距离地面的高度为135米,则可能达到的最大高度为( )

A.135米 | B.160米 | C.175米 | D.180米 |
某农业合作社生产了一种绿色蔬菜共
吨,如果在市场上直接销售,每吨可获利
万元;如果进行精加工后销售,每吨可获利
万元,但需另外支付一定的加工费,总的加工
(万元)与精加工的蔬菜量
(吨)有如下关系:
设该农业合作社将
(吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为
(万元).
(1)写出
关于
的函数表达式;
(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.








(1)写出


(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.
甲、乙两家鞋帽商场销售同一批品牌运动鞋,每双标价为800元,甲、乙两商场销售方式如下:在甲商场买一双售价为780元,买两双每双售价为760元,依次类排,每多买一双则所买各双售价都再减少20元,但每双售价不能低于440元;乙商场一律按标价的75%销售.
(1)分别写出在甲、乙两商场购买
双运动鞋所需费用的函数解析式
和
;
(2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?
(1)分别写出在甲、乙两商场购买



(2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?
某桶装水经营部每天的房租、人员工资等固定成本为300元,每桶水的进价是8元,销售单价与日均销售量的关系如表所示:
请根据以上数据分析,这个店怎样定每桶水的单价才能获得最大利润?最大利润是多少?
销售单价/元 | 9 | 10 | 11 | 12 | 13 | 14 |
日均销售量/桶 | 550 | 500 | 450 | 400 | 350 | 300 |
请根据以上数据分析,这个店怎样定每桶水的单价才能获得最大利润?最大利润是多少?
某公司在甲、乙两地销售某种品牌车,利润(单位:万元)分别为
和
,其中
为销售量(单位:辆)
(1)当销售量在什么范围时,甲地的销售利润不低于乙地的销售利润;
(2)若该公司在这两地共销售
辆车,则甲、乙两地各销售多少量时?该公司能获得利润
最大,最大利润是多少?



(1)当销售量在什么范围时,甲地的销售利润不低于乙地的销售利润;
(2)若该公司在这两地共销售


某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20X-0.1
(0<x<240,x
N),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )


A.100台 | B.120台 | C.150台 | D.180台 |