- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商店某种商品的进货价为每件
元,当售价为每件
元时,一个月能卖出
件.通过市场调查发现,若每件商品的售价每提高
元,则该商品一个月的销售量会减少
件.商店为使销售商品的月利润最高,应将该商品定价为多少?并求出最大利润.





某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设
米,试问
取何值时,运动场所面积最大?



某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)为了解该种蛋糕的市场需求情况与性別是否有关,随机统计了100人的购买情况,得如下列联表:
问:能否有
的把握认为是否购买蛋糕与性別有关?
附:
(1)若烘焙店一天加工16个这种蛋糕,求当天的利润



(2)为了解该种蛋糕的市场需求情况与性別是否有关,随机统计了100人的购买情况,得如下列联表:
| 男 | 女 | 合计 |
购买 | 15 | 35 | 50 |
不购买 | 6 | 44 | 50 |
合计 | 21 | 79 | 100 |
问:能否有

附:

![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为
元,当用水超过5吨时,超过部分每吨4元。某月甲、乙两户共交水费
元,已知甲、乙两户该月用水量分别为
吨。
(1)求
关于
的函数。
(2)若甲、乙两户该月共交水费
元,分别求甲、乙两户该月的用水量和水费。



(1)求


(2)若甲、乙两户该月共交水费

“秃发”是一种常见的毛发疾病,随着发病人群年龄结构的年变化,逐渐引起了社会的广泛关注.一个人出生时头发数量约为100000根,数学徐老师建立了“秃发”函数模型作预估:一个人
岁时的头发根数为
,其中
称为“脱发指数”.
(1)杜老师5岁时有74375根头发,请依据模型求出杜老师的“脱发指数”
的值;
(2)徐老师的学生认为“秃发”函数模型中有两个缺点:①头发的根数应该为整数;②头发的根数不能为负数,徐老师感觉很有道理,将模型作了两处修正,请写出修正后(1)问中杜老师的“秃发”函数模型,并求出杜老师几岁时头发最多.



(1)杜老师5岁时有74375根头发,请依据模型求出杜老师的“脱发指数”

(2)徐老师的学生认为“秃发”函数模型中有两个缺点:①头发的根数应该为整数;②头发的根数不能为负数,徐老师感觉很有道理,将模型作了两处修正,请写出修正后(1)问中杜老师的“秃发”函数模型,并求出杜老师几岁时头发最多.
在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以
万元的优惠价转让给了尚有
万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支
元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件
元;②该店月销量
(百件)与销售价格
(元)的关系如图所示;③每月需各种开支
元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?








(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
某企业生产一种产品,根据经验,其次品率
与日产量
(万件)之间满足关系,
(其中
为常数,且
,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如
表示每生产10件产品,有1件次品,其余为合格品).
(1)试将生产这种产品每天的盈利额
(万元)表示为日产量
(万件)的函数;
(2)当日产量为多少时,可获得最大利润?






(1)试将生产这种产品每天的盈利额


(2)当日产量为多少时,可获得最大利润?
某厂家拟举行双十一促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m万件与年促销费用x万元(
)满足
.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将该产品的年利润y万元表示为年促销费用x万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?


(1)将该产品的年利润y万元表示为年促销费用x万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?
某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该设备开始盈利?
(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该设备开始盈利?
(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.