- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国“一带一路”战略构思提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为
万元,每生产
台,需另投入成本
(万元),当年产量不足
台时,
(万元); 当年产量不小于
台时
(万元),若每台设备售价为
万元,通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润
(万元)关于年产量
(台)的函数关系式;
(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?








(1)求年利润


(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?
中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.

(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?

(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
已知某条有轨电车运行时,发车时间间隔
(单位:分钟)满足:
,
.经测算,电车载客量
与发车时间间隔
满足:
,其中
.
(1)求
,并说明
的实际意义;
(2)若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求每分钟最大净收益.







(1)求


(2)若该线路每分钟的净收益为

上海自贸区某种进口产品的关税税率为
,其市场价格
(单位:千元,
与市场供应量
(单位:万件)之间近似满足关系式:
.
(1)请将
表示为关于
的函数,并根据下列条件计算:若市场价格为7千元,则市场供应量约为2万件.试确定
的值;
(2)当
时,经调查,市场需求量
(单位:万件)与市场价格
近似满足关系式:
.为保证市场供应量不低于市场需求量,试求市场价格
的取值范围.





(1)请将



(2)当





某店从水果批发市场购得椰子两筐,连同运费总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚得78元.则这两筐椰子原来共有______个.
某省会城市地铁车票新的计费标准如下:0至6千米(含6千米)3元,6至18千米(含18千米)4元,18千米以上每6千米递增1元,但总票价不超过7元。
(1)试写出票价
(元)关于路程
(千米)的函数
表达式并画出其图像:
(2)某人买了5元的车票,问他途径的路程不能超过多少千米?
(1)试写出票价



(2)某人买了5元的车票,问他途径的路程不能超过多少千米?
某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=
,其中
,a,b为常数,n∈N,f(0)=
(1)栽种多少年后,该树木的高度是栽种时高度的8倍;
(2)该树木在栽种后哪一年的增长高度最大.


A.已知栽种3年后该树木的高度为栽种时高度的3倍. |
(2)该树木在栽种后哪一年的增长高度最大.
某市每年春节前后,由于大量的烟花炮竹的燃放,空气污染较为严重.该市环保研究所对近年春节前后每天的空气污染情况调查研究后发现,每天空气污染的指数
随时刻
(时)变化的规律满足表达式
,
,其中
为空气治理调节参数,且
.
(1)令
,求
的取值范围;
(2)若规定每天中
的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过5,试求调节参数
的取值范围.






(1)令


(2)若规定每天中


按照某学者的理论,假设一个人生产某产品单件成本为








现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为




(1)求







(2)设







