- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对年利率为
的连续复利,要在
年后达到本利和
,则现在投资值为
,
是自然对数的底数.如果项目
的投资年利率为
的连续复利.
(1)现在投资5万元,写出满
年的本利和,并求满10年的本利和;(精确到0.1万元)
(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目
投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)







(1)现在投资5万元,写出满

(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目

随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)
收入
个税起征点
专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用
等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额
的分布列与期望.




级数 | 一级 | 二级 | 三级 | 四级 | ![]() |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元至25000元的部分 | 超过25000元至35000元的部分 | ![]() |
税率![]() | 3 | 10 | 20 | 25 | ![]() |
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额

一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄
元一年定期,若年利率为
保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为





A.![]() | B.![]() |
C.![]() | D.![]() |
窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为x,y(单位:dm)且x<y,若剪去的正十字形部分面积为4dm2.

(1)求y关于x的函数解析式,并求其定义域;
(2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.

(1)求y关于x的函数解析式,并求其定义域;
(2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.
某工厂因排污比较严重,决定着手整治,一个月时污染度为
,整治后前四个月的污染度如下表:
污染度为
后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:
,
,
,其中
表示月数,
、
、
分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过
.

月数 | ![]() | ![]() | ![]() | ![]() | … |
污染度 | ![]() | ![]() | ![]() | ![]() | … |
污染度为








(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过

某产品生产厂家生产一种产品,每生产这种产品
(百台),其总成本为
万元
,其中固定成本为42万元,且每生产1百台的生产成本为15万元
总成本
固定成本
生产成本
销售收入
万元
满足
,假定该产品产销平衡
即生产的产品都能卖掉
,根据上述条件,完成下列问题:
写出总利润函数
的解析式
利润
销售收入
总成本
;
要使工厂有盈利,求产量
的范围;
工厂生产多少台产品时,可使盈利最大?






















上海途安型号出租车价格规定:起步费
元,可行
千米;
千米以后按每千米按
元计价,可再行
千米;以后每千米都按
元计价。假如忽略因交通拥挤而等待的时间.
请建立车费
(元)和行车里程
(千米)之间的函数关系式;
注意到上海出租车的计价系统是以元为单位计价的,如:小明乘坐途安型号出租车从华师大二附中本部到浦东实验学校走路线一(路线一总长
千米)须付车费
元,走路线二(路线二总长
千米)也须付车费
元.将上述函数解析式进行修正(符号
表示不大于
的最大整数,符号
表示不小于
的最小整数);并求小明乘坐途安型号出租车从华师大二附中本部到闵行分校须付车费多少元?(注:两校区路线长
千米)



















某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工
人(
,且
为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员
人,留岗员工可多创利润
千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员
人,留岗员工可多创利润
千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为
,写出公司获得的经济效益
(千元)关于
的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?







(1)设公司裁员人数为



(2)为了获得最大的经济效益,该公司应裁员多少人?
甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品
(百台),其总成本为
(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入
(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,完成下列问题:
(1)写出利润函数
的解析式(利润=销售收入-总成本);
(2)甲厂生产多少台产品时,可使盈利最多?




(1)写出利润函数

(2)甲厂生产多少台产品时,可使盈利最多?
某工厂生产某种产品的月产量
与月份
之间满足关系
.现已知该厂今年
月份、
月份生产该产品分别为
万件、
万件.则此工厂
月份该产品的产量为________万件.







