- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两地相距1000
,货车从甲地匀速行驶到乙地,速度不得超过80
,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的
倍,固定成本为
元.
(Ⅰ)将全程运输成本
(元)表示为速度
(
)的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,货车应以多大的速度行驶?




(Ⅰ)将全程运输成本



(Ⅱ)为了使全程运输成本最小,货车应以多大的速度行驶?
一个居民小区收取冬季供暖费,根据约定,住户可以从以下两种方案中任选其一:(1)按照使用面积缴纳,每平方米25元;(2)按照建筑面积缴纳,每平方米20元.李华家的住房使用面积是90 m2.如果他家选择第(2)种方案缴纳的供暖费较少,那么他家的建筑面积最多不超过____ m2.
生产某种产品q个单位时成本函数为C(q)=200+0.05q2,求:
(1)生产90个单位该产品时的平均成本;
(2)生产90个到100个单位该产品时,成本的平均变化率;
(3)生产第100个单位该产品时,成本的变化率.
(1)生产90个单位该产品时的平均成本;
(2)生产90个到100个单位该产品时,成本的平均变化率;
(3)生产第100个单位该产品时,成本的变化率.
在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(
)个整点,则称函数f(x)为n阶整点函数.有下列函数:
①
②
③
④
其中是一阶整点的是( )

①




其中是一阶整点的是( )
A.①②③④ | B.①③④ | C.④ | D.①④ |
如图,在C城周边有两条互相垂直的公路
,在点O处交汇,且它们的夹角为90°.已知OC=4 km,OC与公路
夹角为60°.现规划在公路
上分别选择A,B两处作为交汇点(异于点O)直接新建一条公路通过C城,设OA=x km,OB=y km.

(1) 求出y关于x的函数关系式并指出它的定义域;
(2) 试确定点A,B的位置,使△AOB的面积最小.




(1) 求出y关于x的函数关系式并指出它的定义域;
(2) 试确定点A,B的位置,使△AOB的面积最小.
党的“十八大”之后,做好农业农村工作具有特殊重要的意义.国家为了更 好地服务于农民、开展社会主义新农村工作,派调查组到农村某地区考察.该地区有100户农 民,且都从事蔬菜种植.据了解,平均每户的年收入为6万元.为了调整产业结构,当地政府决 定动员部分农民从事蔬菜加工.据统计,若动员
户农民从事蔬菜加工,则剩下的继续 从事蔬菜种植的农民平均每户的年收入有望提高
,而从事蔬菜加工的农民平均每户的年收入为
万元.
(1)在动员
户农民从事蔬菜加工后,要使剩下
户从事蔬菜种植的所有农民总年收 入不低于动员前100户从事蔬菜种植的所有农民年总年收入,求
的取值范围;
(2)在(1)的条件下,要使这
户农民从事蔬菜加工的总年收入始终不高于
户从事蔬菜种植的所有农民年总年收入,求
的最大值.(参考数据:
)



(1)在动员



(2)在(1)的条件下,要使这




某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中
,x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
“节能减排,绿色生态”为当今世界各国所倡导,某公司在科研部门的鼎力支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该公 司每月的处理量
(吨)至少为50吨,至多为220吨.月处理成本
(元)与月处理量
(吨)之间的函数关系式近似表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为120元.
(1)该公司每月处理量为多少吨时,才能使每吨的平均处理成本
最低?
(2)每月处理量为多少吨时,月获利最大?




(1)该公司每月处理量为多少吨时,才能使每吨的平均处理成本

(2)每月处理量为多少吨时,月获利最大?
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润
与投资成正比,其关系如图①;B产品的利润
与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)

(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?



(1)分别求出A,B两种产品的利润与投资之间的函数关系式;
(2)已知该企业已筹集到20万元资金,并将其全部投入A,B两种产品的生产,怎样分配这20万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木
的高度
,垂直放置的标杆
的高度
,仰角
三点共线),试根据上述测量方案,回答如下问题:
(1)若测得
,试求
的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离
(单位:)使
与
之差较大时,可以提高测量的精确度,.若树木的实际高为
,试问
为多少时,
最大?





(1)若测得


(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离






