- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过5000元的部分不纳税,超过5000元的部分为全月纳税所得额,此项税款按下表分段累计计算:

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为
元,当月应缴纳个人所得税为
元,写出
与
的函数关系式;

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为




大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=
log3(
),单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)计算一条鱼静止时耗氧量的单位数.
(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍?


(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)计算一条鱼静止时耗氧量的单位数.
(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍?
地震的等级是用里氏震级M表示,其计算公式为,M=lg A-lg A0,其中A是地震时的最大振幅,A0是“标准地震的振幅”(使用标准地震振幅是为了修正测量中的误差).一般5级地震的震感已比较明显,汶川大地震的震级是8级,则8级地震的最大振幅是5级地震最大振幅的_____________倍.
某工厂生产一种机器的固定成本(即固定投入)为
万元,但每生产一百台,需要新增投入
万元,经调查,市场一年对此产品的需求量为
台,销售收入为
(万元).(
),其中
是产品售出的数量(单位:百台)
(1)把年利润
表示为年产量
(单位:百台)的函数;
(2)当年产量为多少时,工厂所获得年利润最大?






(1)把年利润


(2)当年产量为多少时,工厂所获得年利润最大?
某城市出租车的收费标准是:起步价5元(乘车不超过3千米);行驶3千米后,每千米车费1.2元;行驶10千米后,每千米车费1.8元.
(1)写出车费与路程的关系式;
(2)一乘客计划行程30千米,为了节省支出,他设计了三种乘车方案:
①不换车:乘一辆出租车行30千米;
②分两段乘车:先乘一辆车行15千米,换乘另一辆车再行15千米;
③分三段乘车:每乘10千米换一次车.
问哪一种方案最省钱?
(1)写出车费与路程的关系式;
(2)一乘客计划行程30千米,为了节省支出,他设计了三种乘车方案:
①不换车:乘一辆出租车行30千米;
②分两段乘车:先乘一辆车行15千米,换乘另一辆车再行15千米;
③分三段乘车:每乘10千米换一次车.
问哪一种方案最省钱?
如图,某广场要规划一矩形区域ABCD,并在该区域内设计出三块形状、大小完全相同的小矩形绿化区,这三块绿化区四周均设置有1 m宽的走道,已知三块绿化区的总面积为200 m2,则该矩形区域ABCD占地面积的最小值为( )


A.248 m2 | B.288 m2 |
C.328 m2 | D.368 m2 |
已知甲、乙两车间的月产值在2017年1月份相同,甲车间以后每个月比前一个月增加相同的产值,乙车间以后每个月比前一个月增加产值的百分比相同.到2017年7月份发现两车间的月产值又相同,比较甲、乙两个车间2017年4月份月产值的大小,则( )
A.甲车间大于乙车间 | B.甲车间等于乙车间 |
C.甲车间小于乙车间 | D.不确定 |
为了维持市场持续发展,壮大集团力量,某集团在充分调查市场后决定从甲、乙两种产品中选择一种进行投资生产,打入国际市场.已知投资生产这两种产品的有关数据如下表(单位:万美元):
其中年固定成本与年生产的件数无关,a为常数,且6≤a≤8.另外,当年销售x件乙产品时需上交0.05x2万美元的特别关税,假设所生产的产品均可售出.
(1)写出该集团分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数x(x∈N*)之间的函数关系式;
(2)分别求出投资生产这两种产品的最大年利润;
(3)如何决定投资可使年利润最大.
| 年固定成本 | 每件产品的成本 | 每件产品的销售价 | 每年可最多生产的件数 |
甲产品 | 20 | a | 10 | 200 |
乙产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,a为常数,且6≤a≤8.另外,当年销售x件乙产品时需上交0.05x2万美元的特别关税,假设所生产的产品均可售出.
(1)写出该集团分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数x(x∈N*)之间的函数关系式;
(2)分别求出投资生产这两种产品的最大年利润;
(3)如何决定投资可使年利润最大.