- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“今有垣厚七尺八寸七有五,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚7.875尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的天数为( )
A.2 | B.3 | C.4 | D.5 |
某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过
吨时,按每吨
元收取;当该用户用水量超过
吨时,超出部分按每吨
元收取.
(1)记某用户在一个收费周期的用水量为
吨,所缴水费为
元,写出
关于
的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为
元,且甲、乙两用户用水量之比为
,试求出甲、乙两用户在该收费周期内各自的用水量和水费.




(1)记某用户在一个收费周期的用水量为




(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为


某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p元,则销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8300-170p-p2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).
某公司生产一种产品,固定成本为
元,每生产一单位的产品,成本增加100元,若总收入
与年产量
的关系是
,则当总利润最大时,每年生产产品的单位数是()




A.150 | B.200 | C.250 | D.300 |
如图所示,公园内有一块边长为
的等边
形状的三角地,现修成草坪,图中
把草坪分成面积相等的两部分,
在
上,
在
上.

(Ⅰ)设
,试用
表示
的函数关系式;
(Ⅱ)如果
是灌溉水管,为节约成本希望它最短,
的位置应该在哪里?如果
是参观线路,则希望它最长,
的位置又在哪里?请给予证明.








(Ⅰ)设




(Ⅱ)如果




购买一件售价为5 000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月付款一次,过1个月再付款一次,如此下去,到第12次付款后全部付清.如果月利率为0.8%,每月利息按复利计算(上月利息计入下月本金),那么每期应付款多少元?(精确到1元)
为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
问小明家第一季度共用多少度?
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
月份 | 一月 | 二月 | 三月 | 合计 |
缴费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
问小明家第一季度共用多少度?
我国西部某省
级景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数
与第
天近似地满足
(千人),且参观民俗文化村的游客人均消费
近似地满足
(元).
(1)求该村的第
天的旅游收入
(单位千元,
,
)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?






(1)求该村的第




(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?