- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下表显示出函数值
随自变量
变化的一组数据,判断它最可能的函数模型是( )




A.一次函数模型 | B.二次函数模型 |
C.指数函数模型 | D.对数函数模型 |
共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,
据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x
满足函数关系
式
.
(1)要使营运累计利润高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运利润
的值最大?
据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x

式

(1)要使营运累计利润高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运利润

(2018天津一中高三上学期第二次月考)某公司计划在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为
分钟和
分钟.
(Ⅰ)用
列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?


(Ⅰ)用

(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?
今有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P和Q(万元),它们与投入资金
(万元)的关系,有经验公式
,今有3万元资金投入经营甲、乙两种商品,对甲、乙两种商品的资金投入应分别为多少时,才能获得最大利润?最大利润是多少?


轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m.
(1)求助跑道所在的抛物线方程;
(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)

(1)求助跑道所在的抛物线方程;
(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)

现欲修建一横断面为等腰梯形(如图)的水渠,为降低成本必须尽量减少水与渠壁的接触面积,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)为多大时,方能使修建成本最低?

(本小题满分16分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为
立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
(
)千元.设该容器的建造费用为
千元.
(1)写出
关于
的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的
.





(1)写出


(2)求该容器的建造费用最小时的


某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量
吨收取的污水处理费
元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.




做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积价格为b元,问锅炉的底面直径与高的比为多少时,造价最低?