- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
请你设计一个包装盒.如图所示,
是边长为
的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点
,形成一个正四棱柱形状的包装盒,
在
上,是被切去的一个等腰直角三角形斜边的两个端点.设
.某厂商要求包装盒的容积
最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.










如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设每间虎笼的长为
,宽为
,现有
长的钢筋网材料,为使每间虎笼面积最大,则
.





如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上.由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.


已知小矩形花坛ABCD中,AB=3m,AD=2m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.

(1)要使矩形AMPN的面积大于32m2,AN的长应在什么范围内?
(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM。

(1)要使矩形AMPN的面积大于32m2,AN的长应在什么范围内?
(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM。
某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得的补贴分别为
、
万元.已知厂家对A、B两种型号电视机的投放总金额为10万元,且A、B两型号的电视机投放金额都不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值(精确到0.1,参考数据:
)



某医院用甲、乙两种原材料为手术后病人配制营养餐,甲种原料每克含蛋白质5个单位和维生素C 10个单位,售价2元;乙种原料每克含蛋白质6个单位和维生素C 20个单位,售价3元;若病人每餐至少需蛋白质50个单位、维生素C 140个单位,在满足营养要求的情况下最省的费用为 .
如图,某城市小区有一个矩形休闲广场,
米,广场的一角是半径为
米的扇形
绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅
(宽度不计),点
在线段
上,并且与曲线
相切;另一排为单人弧形椅沿曲线
(宽度不计)摆放.已知双人靠背直排椅的造价每米为
元,单人弧形椅的造价每米为
元,记锐角
,总造价为
元.

(1)试将
表示为
的函数
,并写出
的取值范围;
(2)如何选取点
的位置,能使总造价
最小.













(1)试将




(2)如何选取点


某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x(单位:万件)与年促销费用t(单位:万元)之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?