- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用二分法求方程的近似解,求得
的部分函数值数据如下表所示:
则当精确度为0.1时,方程
的近似解可取为

![]() | 1 | 2 | 1.5 | 1.625 | 1.75 | 1.875 | 1.8125 |
![]() | -6 | 3 | -2.625 | -1.459 | -0.14 | 1.3418 | 0.5793 |
则当精确度为0.1时,方程

A.![]() | B.![]() | C.![]() | D.![]() |
已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.
![]() | 0 | 1 | 2 | 3 |
![]() | 0 | 0.7 | 1.6 | 3.3 |
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.
近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?






(1)求

(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
若函数
的图象上存在两个点
,
关于原点对称,则称点对
为
的“友情点对”,点对
与
可看作同一个“友情点对”,若函数
恰好有两个“友情点对”,则实数
的值为__________









已知f(x)是定义在
上的单调函数,且对任意的x∈
都有
,则方程
的一个根所在的区间是( )




A.(0,1) | B.(1,2) | C.(2,3) | D.(3,4) |
定义:如果函数
在定义域内给定区间
上存在
,满足
,则称函数
是
上的“平均值函数”,
是它的一个均值点.例如
是
上的平均值函数,0就是它的均值点.若函数
是
上的“平均值函数”,则实数m的取值范围是______.










