- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
.
.
(1)若
是函数
的极值点,求实数a的值;
(2)若函数
的图象上任意一点处切线的斜率
恒成立,求实数a的取值范围;
(3)若函数
在
上有两个零点,求实数a的取值范围.



(1)若


(2)若函数


(3)若函数


水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
V(t)=

(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
某车间生产某机器的两种配件A和B,生产配件A成本费y
与该车间的工人人数x成反比,而生产配件B成本费y
与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y
和y
分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?




(本小题满分12分)如图所示是某水产养殖场的养殖大网箱的平面图,四周的实线为网衣,为避免混养,用筛网(图中虚线)把大网箱隔成大小一样的小网箱.

(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米时,可使总造价最低?

(1)若大网箱的面积为108平方米,每个小网箱的长x,宽y设计为多少米时,才能使围成的网箱中筛网总长度最小;
(2)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超过15米,则小网箱的长、宽为多少米时,可使总造价最低?
设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100).而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元.
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?
经市场调查:生产某产品需投入年固定成本为3万元,每生产
万件,需另投入流动成本为
万元,在年产量不足8万件时,
(万元),在年产量不小于8万件时,
(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(注:年利润=年销售收入
固定成本
流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?




(1)写出年利润


(注:年利润=年销售收入


(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?