- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,
个单位的固体碱在水中逐渐溶化,水中的碱浓度
与时间
(小时)的关系可近似地表示为:
,只有当污染河道水中碱的浓度不低于
时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到
时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为
,求
的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)





(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到



如果函数f(x)的定义域为
,且f(x)为增函数,f(xy)=f(x)+f(y)。
(1)证明:
;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。

(1)证明:

(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围。
作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为
平方米,矩形一边的长为
米(如图所示)

(1)试将
表示为
的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积
取得最大值.



(1)试将


(2)问应该如何设计矩形地块的边长,使花圃占地面积

(本题满分12分)
美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用
万元满足
,已知生产该产品还需投入成本
万元(不含促销费用),每件产品的销售价格定为
元.
(Ⅰ)将该产品的利润
万元表示为促销费用
万元的函数(利润=总售价-成本-促销费);
(Ⅱ)促销费用投入多少万元时,厂家的利润最大.
美国华尔街的次贷危机引起的金融风暴席卷全球,低迷的市场造成产品销售越来越难,为此某厂家举行大型的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用




(Ⅰ)将该产品的利润


(Ⅱ)促销费用投入多少万元时,厂家的利润最大.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板
长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.

(1)当
=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域
内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.










(1)当

(2)若跳水运动员在区域


某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第
天的利润
(单位:万元,
),记第
天的利润率
,例如
(1).求
的值;
(2).求第
天的利润率
;
(3).该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率.






(1).求

(2).求第


(3).该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率.
设a为实数,设函数
的最大值为g(a).
(Ⅰ)设t=
,求t的取值范围,并把f(x)表示为t的函数m(t)
(Ⅱ)求g(a)
(Ⅲ)试求满足
的所有实数a

(Ⅰ)设t=

(Ⅱ)求g(a)
(Ⅲ)试求满足
