- 集合与常用逻辑用语
- 函数与导数
- 二次函数的图象分析与判断
- + 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
若函数f(x)在R上可导,且f(x)=x2+2f′(2)x+m,则( )
A.f(0)<f(5) | B.f(0)=f(5) |
C.f(0)>f(5) | D.f(0)≥f(5) |
抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
