- 集合与常用逻辑用语
- 函数与导数
- 二次函数的概念
- + 二次函数的性质与图象
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x2+bx+c,其中b,c∈R.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
(1)当f(x)的图象关于直线x=1对称时,b=______;
(2)如果f(x)在区间[-1,1]不是单调函数,证明:对任意x∈R,都有f(x)>c-1;
(3)如果f(x)在区间(0,1)上有两个不同的零点.求c2+(1+b)c的取值范围.
已知函数
,记
.
⑴解不等式:
;
⑵设k为实数,若存在实数
,使得
成立,求k的取值范围;
⑶记
(其中a,b均为实数),若对于任意的
,均有
,求a,b的值.


⑴解不等式:

⑵设k为实数,若存在实数


⑶记



定义:已知函数
在
上的最小值为
,若
恒成立,则称函数
在
上具有“
”性质.
(
)判断函数
在
上是否具有“
”性质?说明理由.
(
)若
在
上具有“
”性质,求
的取值范围.







(




(





二次函数f(x)=4x2-mx+5,f(x)在(-∞,-2)上递减,(-2,+∞)上递增,则f(1)的值为( )
A.-7 | B.17 | C.1 | D.25 |