- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线C:y2=2px(p>0),G为圆H:(x+2)2+y2=1上一动点,由G向C引切线,切点分别为E,F,当G点坐标为(-1,0)时,△GEF的面积为4.
(Ⅰ)求C的方程;
(Ⅱ)当点G在圆H:(x+2)2+y2=1上运动时,记k1,k2分别为切线GE,GF的斜率,求|
|的取值范围.
(Ⅰ)求C的方程;
(Ⅱ)当点G在圆H:(x+2)2+y2=1上运动时,记k1,k2分别为切线GE,GF的斜率,求|


幂函数为什么叫“幂函数”呢?幂,本义为方布.三国时的刘徽为《九章算术•方田》作注:“田幂,凡广(即长)从(即宽)相乘谓之乘.”幂字之义由长方形的布引申成长方形的面积;明代徐光启翻译《几何原本》时,自注曰:“自乘之数曰幂”.幂字之义由长方形的面积再引申成相同的数相乘,即
.

(1)使用五点作图法,画出
的图象,并注明定义域;
(2)求函数
的值域.


(1)使用五点作图法,画出

(2)求函数
