- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数
,若存在实数
,使
成立,则称
为
的不动点.
(1)当
,
时,求
的不动点;
(2)若对于任何实数
,函数
恒有两相异的不动点,求实数
的取值范围.





(1)当



(2)若对于任何实数



已知二次函数
,若
的解集为
。
(1)求函数
的解析式;
(2)设
其中
,求函数
在
时的最大值
(3)若
(
为实数),对任意
,总存在
使得
成立,求实数
的取值范围。



(1)求函数

(2)设





(3)若






已知函数
.
(1)求函数
的最大值;
(2)若对于任意
,均有
,求正实数
的取值范围;
(3)是否存在实数
,使得不等式
对于任意
恒成立?若存在,求出
的取值范围;若不存在,说明理由.

(1)求函数

(2)若对于任意



(3)是否存在实数



