- 集合与常用逻辑用语
- 函数与导数
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- + 函数周期性的应用
- 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
奇函数f(x)满足f(x-2)=-f(x),且当x∈[0,2]时,f(x)=2x-x2,则f(2018)+f(2019)+f(2020)的值为________.
设函数f(x)为定义在R上的以3为周期的奇函数,若f(1)>0,f(2)=(a+1)(2a-3),则a的取值范围是________.
已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=logax有三个不同的实根,求a的取值范围.
设函数f(x)是定义在R上的奇函数,对任意实数x有
成立.
(1)证明y=f(x)是周期函数,并指出其周期;
(2)若f(1)=2,求f(2)+f(3)的值.

(1)证明y=f(x)是周期函数,并指出其周期;
(2)若f(1)=2,求f(2)+f(3)的值.
设f(x)是定义在R上的奇函数,当x≥0时恒有f(x+2)=f(x),当x∈[0,2]时,f(x)=ex
1,则f(2014)+f(-2015)=()

A.1-e | B.e-1 | C.-1-e | D.e+1 |
如果
的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.给出下列命题:
①函数
具有“
性质”;
②若奇函数
具有“
性质”,且
,则
;
③若函数
具有“
性质”,图象关于点
成中心对称,且在
上单调递减,则
在
上单调递减,在
上单调递增;
④若不恒为零的函数
同时具有“
性质”和 “
性质”,且函数
对
,都有
成立,则函数
是周期函数.
其中正确的是 (写出所有正确命题的编号).






①函数


②若奇函数




③若函数







④若不恒为零的函数







其中正确的是 (写出所有正确命题的编号).