- 集合与常用逻辑用语
- 函数与导数
- + 函数的周期性的定义与求解
- 由周期性求函数的解析式
- 函数周期性的应用
- 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
、
的定义域均为
,若对任意
,且
,具有
,则称函数
为
上的单调非减函数,给出以下命题:① 若
关于点
和直线
(
)对称,则
为周期函数,且
是
的一个周期;② 若
是周期函数,且关于直线
对称,则
必关于无穷多条直线对称;③ 若
是单调非减函数,且关于无穷多个点中心对称,则
的图象是一条直线;④ 若
是单调非减函数,且关于无穷多条平行于
轴的直线对称,则
是常值函数;以上命题中,所有真命题的序号是_________























关于函数
有以下四个命题:
①对于任意的
,都有
; ②函数
是偶函数;
③若
为一个非零有理数,则
对任意
恒成立;
④在
图象上存在三个点
,
,
,使得
为等边三角形.其中正确命题的序号是__________ .

①对于任意的



③若



④在





设函数
是定义在
上的偶函数,且对任意的
恒有
,已知当
时,
,则:
①
;
②函数
在
上递减,在
上递增;
③函数
的最大值是1,最小值是0;
④当
时,
其中所有正确命题的序号是________.






①

②函数



③函数

④当


其中所有正确命题的序号是________.