- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- + 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数f(x)在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f(1-m)+f(-m)<0,则m 的取值范围是( )
A.![]() | B.(-1,1) |
C.![]() | D.(-1,0)∪![]() |
已知函数y=f(x)是定义在R上的偶函数,当x≤0时,y=f(x)是减函数,若|x1|<|x2|,则( )
A.f(x1)-f(x2)<0 | B.f(x1)-f(x2)>0 |
C.f(x1)+f(x2)<0 | D.f(x1)+f(x2)>0 |