- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)为R上的偶函数,满足:对任意非负实数x1,x2,x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1).若f(1)=1,则满足f(x﹣2)≤1的x的取值范围是( )
A.[﹣2,2] | B.[﹣1,1] | C.[0,4] | D.[1,3] |
已知函数f(x)=
(k∈R)
(Ⅰ)若该函数是偶函数,求实数k及f(log32)的值;
(Ⅱ)若函数g(x)=x+log3f(x)有零点,求k的取值范围.

(Ⅰ)若该函数是偶函数,求实数k及f(log32)的值;
(Ⅱ)若函数g(x)=x+log3f(x)有零点,求k的取值范围.
定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A.f ![]() ![]() ![]() | B.f ![]() ![]() ![]() |
C.f ![]() ![]() ![]() ![]() | D.f ![]() ![]() ![]() |
已知函数f(x)=ln(
+mx)(m∈R).
(Ⅰ)是否存在实数m,使得函数f(x)为奇函数,若存在求出m的值,若不存在,说明理由;
(Ⅱ)若m为正整数,当x>0时,f(x)>lnx+
+
,求m的最小值.

(Ⅰ)是否存在实数m,使得函数f(x)为奇函数,若存在求出m的值,若不存在,说明理由;
(Ⅱ)若m为正整数,当x>0时,f(x)>lnx+

