- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知奇函数y=f(x)在区间[﹣2,2]上为减函数,且在此区间上,y=f(x)的最大值为2,则函数y=|f(x)|在区间上[0,2]是( )
A.增函数且最大值为2 | B.增函数且最小值为2 |
C.减函数且最大值为2 | D.减函数且最小值为2 |
定义在R上的函数f(x)满足:f(x-2)的对称轴为x=2,f(x+1)=
(f(x)≠0),且f(x)在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f(sinα)和f(cosβ)的大小关系是( )

A.![]() | B.![]() |
C.![]() | D.以上情况均有可能 |