- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
求下列函数的解析式
(1)设函数
是定义在R上的函数,对任意实数
,求函数
的解析式;
(2)已知定义在R上的函数
是偶函数,且
时,
,求函数
的解析式.
(1)设函数



(2)已知定义在R上的函数




已知函数
为偶函数,函数
为奇函数。
对任意实数x恒成立.
(1)求函数
与
;
(2)设
,
,若
对于
恒成立,求实数m的取值范围;
(3)对于(2)中的函数
,若方程
没有实数解,实数m的取值范围.



(1)求函数


(2)设




(3)对于(2)中的函数


设函数
和
都是定义在集合
上的函数,对于任意的
,都有
成立,称函数
与
在
上互为“互换函数”.
(1)函数
与
在
上互为“互换函数”,求集合
;
(2)若函数
(
且
)与
在集合
上互为“互换函数”,求证:
;
(3)函数
与
在集合
且
上互为“互换函数”,当
时,
,且
在
上是偶函数,求函数
在集合
上的解析式.








(1)函数




(2)若函数






(3)函数









