- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
是
的导函数,有下述四个结论
①
是奇函数 ②
在
内有21个极值点
③
在区间
上为增函数 ④
在区间
上恒成立的充要条件是
其中所有正确结论的编号是( )


①



③





其中所有正确结论的编号是( )
A.①③ | B.①④ | C.①③④ | D.②③④ |
已知函数
,(a,b∈R)为奇函数.
(1)求b值;
(2)当a=﹣2时,存在x0∈[1,4]使得不等式f(x0)≤t成立,求实数t的取值范围;
(3)当a≥1时,求证:函数g(x)=f(2x)﹣c(c∈R)在区间(﹣∞,﹣1]上至多有一个零点.

(1)求b值;
(2)当a=﹣2时,存在x0∈[1,4]使得不等式f(x0)≤t成立,求实数t的取值范围;
(3)当a≥1时,求证:函数g(x)=f(2x)﹣c(c∈R)在区间(﹣∞,﹣1]上至多有一个零点.