- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域是
,且
,
,当
时,
.
(1)判断
的奇偶性,并说明理由;
(2)求
在区间
上的解析式;
(3)是否存在整数
,使得当
时,不等式
有解?证明你的结论.






(1)判断

(2)求


(3)是否存在整数



已知函数
为偶函数,函数
为奇函数。
对任意实数x恒成立.
(1)求函数
与
;
(2)设
,
,若
对于
恒成立,求实数m的取值范围;
(3)对于(2)中的函数
,若方程
没有实数解,实数m的取值范围.



(1)求函数


(2)设




(3)对于(2)中的函数


已知函数
(
,
为实数),
.
(1)若函数
的最小值是
,求
的解析式;
(2)在(1)的条件下,
在区间
上恒成立,试求
的取值范围;
(3)若
,
为偶函数,实数
,
满足
,
,定义函数
,试判断
值的正负,并说明理由.




(1)若函数



(2)在(1)的条件下,



(3)若








下列说法中正确的有( )
A.若函数![]() ![]() |
B.函数![]() |
C.不等式![]() ![]() |
D.![]() |