- 集合与常用逻辑用语
- 函数与导数
- 利用函数单调性求最值
- + 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)若
,函数
在区间
上的最大值是
,最小值是
,求
的值;
(2)用定义法证明
在其定义域上是减函数;
(3)设
, 若对任意
,不等式
恒成立,求实数
的取值范围.


(1)若






(2)用定义法证明

(3)设




对于三个实数
、
、
,若
成立,则称
、
具有“性质
”.
(1)试问:①
,0是否具有“性质2”;
②
(
),0是否具有“性质4”;
(2)若存在
及
,使得
成立,且
,1具有“性质2”,求实数
的取值范围;
(3)设
,
,
,
为2019个互不相同的实数,点
(
)
均不在函数
的图象上,是否存在
,且
,使得
、
具有“性质2018”,请说明理由.







(1)试问:①

②


(2)若存在





(3)设






均不在函数





具有“性质2018”,请说明理由.
《数学统综》有如下记载:“有凹钱,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数
,在
上取三个不同的点
,均存在
为三边长的三角形,则实数
的取值范围为( )





A.![]() | B.![]() | C.![]() | D.![]() |