- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- + 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s,过点P作PE∥AC交DC于点E,同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,连接PQ、QE,PQ与AC交与点F,设运动时间为t(s)(0<t<8).
(1)当t为何值时,四边形PFCE是平行四边形;
(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;
(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的
;
(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.
(1)当t为何值时,四边形PFCE是平行四边形;
(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;
(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的

(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.

如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,
的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,

(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.

(2016•海南模拟)如图,在边长为6的正方形ABCD中,将正方形ABCD绕点A逆时针旋转角度α(0°<α<90°),得到正方形AEFG,EF交线段CD于点P,FE的延长线交线段BC于点H,连接AH、AP.
(1)求证:△ADP≌△AEP;
(2)①求∠HAP的度数;②判断线段HP、BH、DP的数量关系,并说明理由;
(3)连接DE、EC、CF、DF得到四边形CFDE,在旋转过程中,四边形CFDE能否为矩形?若能,求出BH的值;若不能,请说明理由.
(1)求证:△ADP≌△AEP;
(2)①求∠HAP的度数;②判断线段HP、BH、DP的数量关系,并说明理由;
(3)连接DE、EC、CF、DF得到四边形CFDE,在旋转过程中,四边形CFDE能否为矩形?若能,求出BH的值;若不能,请说明理由.

如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.
(1)求证:四边形AFCD是矩形;
(2)求证:DE⊥EF.
(1)求证:四边形AFCD是矩形;
(2)求证:DE⊥EF.

已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.

(1)试说明△ADE≌△CBF;
(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;
(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.

(1)试说明△ADE≌△CBF;
(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;
(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.
如图,P为正方形ABCD的边BC上一动点(P与

A. C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M. |
(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长。

已知,点P是正方形ABCD内的一点,连PA、PB、P
A. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长. (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. ![]() |
阅读材料:
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.

已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点
A.![]() ![]() (1)求证:△AOD≌△EOC; (2)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形?请说明理由. |
如图,正方形ABCD中,对角线AC上有一点P,连接BP、DP,过点P作PE⊥PB交CD于点E,连接B
A.![]() (1)求证:BP=EP; (2)若CE=3,BE=6,求∠CPE的度数; (3)探究AP、PC、BE之间的数量关系,并给予证明. |