- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- + 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)如图矩形
的对角线
、
交于点
,过点
作
,且
,连接
,判断四边形
的形状并说明理由.
(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.
(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.










(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.
(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.



如图
,
是等腰直角三角形,
,
四边形
是正方形,点
、
分别在边
、
上,此时
,
成立.
当
绕点
逆时针旋转
时,如图
,
成立吗?若成立,请证明,若不成立,请说明理由;
当
绕点
逆时针旋转
时,如图
,延长
交
于点
.求证:
.



























如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P,若AE=AP=1,PB=
,下列结论:① △APD≌△AEB;② EB⊥ED;③ 点B到直线AE的距离为
; ④
,其中正确结论的序号是( )





A.①②③ | B.①②④ | C.①③④ | D.②③④ |
已知正方形
中,点
、
、
、
分别在边
、
、
、
上,“爱琢磨”学习小组的小明说“若
,则
”,小红说“若
,则
”.则他们的说法( )













A.小明正确 | B.小红正确 | C.都正确 | D.都不正确 |
请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.

(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
问题:如图,在正方形









探究:当



小聪同学的思路是:首先可以说明四边形




请你参考小聪同学的思路,探究并解决这个问题.

(1)求证:四边形

(2)



理由:
如图,
、
分别是正方形
的边
、
上的点,
,
、
相交于点
.下列结论:
;
;
与
成中心对称.其中,正确的结论有( )















A.0个 | B.1个 | C.2个 | D.3个 |
正方形
中,将一个直角三角板的直角顶点与点
重合,一条直角边与边
交于点
(点
不与点
和点
重合),另一条直角边与边
的延长线交于点
.
如图①,求证:
;
如图②,此直角三角板有一个角是
,它的斜边
与边
交于
,且点
是斜边
的中点,连接
,求证:
;
在
的条件下,如果
,那么点
是否一定是边
的中点?请说明你的理由.

























