刷题首页
题库
初中数学
题干
如图
,
是等腰直角三角形,
,
四边形
是正方形,点
、
分别在边
、
上,此时
,
成立.
当
绕点
逆时针旋转
时,如图
,
成立吗?若成立,请证明,若不成立,请说明理由;
当
绕点
逆时针旋转
时,如图
,延长
交
于点
.求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-03 09:37:46
答案(点此获取答案解析)
同类题1
建立模型:
如图1,等腰Rt△
ABC
中,∠
ABC
=90°,
CB
=
BA
,直线
ED
经过点
B
,过
A
作
AD
⊥
ED
于
D
,过
C
作
CE
⊥
ED
于
E
.则易证△
ADB
≌△
BE
A.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段
AB
和直角∠
ABC
转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点
A
(0,4),点
B
(3,0),△
ABC
是等腰直角三角形.
①若∠
ABC
=90°,且点
C
在第一象限,求点
C
的坐标;
②若
AB
为直角边,求点
C
的坐标;
(2)如图3,长方形
MFNO
,
O
为坐标原点,
F
的坐标为(8,6),
M
、
N
分别在坐标轴上,
P
是线段
NF
上动点,设
PN
=
n
,已知点
G
在第一象限,且是直线
y
=2
x
一6上的一点,若△
MPG
是以
G
为直角顶点的等腰直角三角形,请直接写出点
G
的坐标.
同类题2
如图,等腰直角三角形
ABC
中,点
D
在斜边
BC
上,以
AD
为直角边作等腰直角三角形
ADE
.
(1)求证:△
ABD
≌△
ACE
;
(2)求证:
BD
2
+
CD
2
=2
AD
2
.
同类题3
如图,在正方形
中,点
、
为边
和
上的动点(不含端点),
.下列三个结论:①当
时,则
;②
;③
的周长不变,其中正确结论的个数是( )
A.0
B.1
C.2
D.3
同类题4
如图,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°
(1)若BD=2,CE=4,则DE=_____.
(2)若∠AEB=75°,则线段BD与CE的数量关系是______.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型