如图所示,若四边形
是正方形,点
,
,
,
分别为
,
,
,
的中点.
(1)求证:四边形
是正方形.
(2)若将正方形
改为任意四边形,且
,
,是探究四边形
的形状.









(1)求证:四边形

(2)若将正方形





如图,已知BD是菱形ABCD的一条对角线,请仅用无刻度的直尺,分别按下列要求画图.
(1)如图,点E在AB上,连接DE,在BC上取点F,使
;

(2)如图,
为等腰直角三角形,
,在菱形ABCD内取点F,使四边形BEDF为正方形.
(1)如图,点E在AB上,连接DE,在BC上取点F,使


(2)如图,



已知:正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA上,且AE=BF=CG=DH.
(1)四边形EFGH是正方形吗?为什么?
(2)若正方形ABCD的边长为4cm,且BE=CF=DG=AH=1cm,请求出四边形EFGH的面积.
(1)四边形EFGH是正方形吗?为什么?
(2)若正方形ABCD的边长为4cm,且BE=CF=DG=AH=1cm,请求出四边形EFGH的面积.

如图,等腰△ABC中,AB=AC.BD,CE分别是两腰上的中线,BD和CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,并说明理由.

如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=BE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.

如图15,在Rt△ABC中,
,CP平分∠ACB,CP与AB交于点D,且 PA=PB.

(1). 请你过点P分别向AC、BC作垂线,垂足分别为点E、F,并判断四边形PECF的形状
(2). 求证:△PAB为等腰直角三角形
(3).设
,
,试用
、
的代数式表示
的周长;
(4).试探索当边AC、BC的长度变化时,
的值是否发生变化,若不变,请直接写出这个不变的值,若变化,试说明理由


(1). 请你过点P分别向AC、BC作垂线,垂足分别为点E、F,并判断四边形PECF的形状
(2). 求证:△PAB为等腰直角三角形
(3).设





(4).试探索当边AC、BC的长度变化时,

如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.

(本题满分9分)如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.

(1)求证: ∠CAB=∠DAB;
(2)若∠CAD=90°,求证:四边形AEMF是正方形.

(1)求证: ∠CAB=∠DAB;
(2)若∠CAD=90°,求证:四边形AEMF是正方形.
数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.
请你阅读下面交流信息,解决所提出的问题.
展示交流:
小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.
小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.
(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.
(选择图乙或图丙的一种情况说明即可).

(2)小慧思考问题的方式中,蕴含的数学思想是 .
拓展延伸:
根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT是什么样的特殊四边形?请说明理由.
请你阅读下面交流信息,解决所提出的问题.
展示交流:
小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.
小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.
(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.
(选择图乙或图丙的一种情况说明即可).

(2)小慧思考问题的方式中,蕴含的数学思想是 .
拓展延伸:
根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT是什么样的特殊四边形?请说明理由.
