- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- + 根据正方形的性质证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、B

A.特例探究:如图,若△ADE和△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由. |

操作与证明:

如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断线段MD与MN的关系,得出结论;
结论:DM、MN的关系是: ;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C旋转180°,其他条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断线段MD与MN的关系,得出结论;
结论:DM、MN的关系是: ;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C旋转180°,其他条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
如图,在正方形
中,
、
是对角线
上的两个动点,
是正方形四边上的任意一点,且
,
,设
,当
是等腰三角形时,下列关于
点个数的说法中,一定正确的是( )
①当
(即
、
两点重合)时,
点有6个;
②当
时,
点最多有9个;
③当
是等边三角形时,
点有4个;
④当
点有8个时,
.











①当




②当


③当


④当



A.①③ | B.①④ | C.②④ | D.②③ |
如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=5,BF=8则EF的长为__________.

如图正方形ABCD,E、F分别为BC、CD边上一点.
(1)若∠EAF=45°,求证:EF=BE+DF;
(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.
(1)若∠EAF=45°,求证:EF=BE+DF;
(2)若该正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.

已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACG
(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.
A.求证S△AEF=S△ABC. |

如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是( )


A.AE=BF | B.∠DAE=∠BFC |
C.∠AEB+∠BFC=90° | D.AE⊥BF |