- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- + 菱形的性质
- 利用菱形的性质求角度
- 利用菱形的性质求线段长
- 利用菱形的性质求面积
- 利用菱形的性质证明
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接E
A.![]() (1)求证:AE=EC; (2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由. |
如图,在菱形ABCD中,∠BAD=44°,AB的垂直平分线交对角线AC于点F,垂足为E,连结DF,则∠CDF等于( )


A.112° | B.114° | C.116° | D.118° |
如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E两点,求∠AFO的度数.

如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.

(1)求证:CE=CF;
(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.

(1)求证:CE=CF;
(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.
如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是( )


A.1cm2 | B.2cm2 | C.3cm2 | D.4cm2 |
如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.

如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.
(1)求证:四边形BFCE是平行四边形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是 .
(1)求证:四边形BFCE是平行四边形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是 .

矩形ABCD中,AB=8,AD=6,P、Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别点E,F,点Q关于直线BC,CD的对称点分别是点G、H.若由点E,F,G,H构成的四边形恰好为菱形,则PQ的长为_____ .
三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为________cm.
