- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- + 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是( )


A.20° | B.25° | C.30° | D.40° |
如图,在△ABC中,点D为AC边的中点,作DE//AB,点F为射线DE上的一点,连接AF,CF.当AF⊥CF时,请证明FA平分∠CAB.

在△ABC中,点P是平面内任意一点(不同于A、B、C),若点P与A、B、C中的某两点的连线的夹角为直角时,则称点P为△ABC的一个勾股点.

(1)如图1,若点P是△ABC内一点,∠A=55°,∠ABP=10°,∠ACP=25°,试说明点P是△ABC的一个勾股点;
(2)如图2,等腰△ABC的顶点都在格点上,点D是BC的中点,点P在直线AD上,请在图中标出使得点P是△ABC的勾股点时,点P的位置;
(3)在Rt△ABC中,∠ACB=90°,AC=12,BC=16,点D是AB的中点,点P在射线CD上.若点P是△ABC的勾股点,请求出CP的长;

(1)如图1,若点P是△ABC内一点,∠A=55°,∠ABP=10°,∠ACP=25°,试说明点P是△ABC的一个勾股点;
(2)如图2,等腰△ABC的顶点都在格点上,点D是BC的中点,点P在直线AD上,请在图中标出使得点P是△ABC的勾股点时,点P的位置;
(3)在Rt△ABC中,∠ACB=90°,AC=12,BC=16,点D是AB的中点,点P在射线CD上.若点P是△ABC的勾股点,请求出CP的长;
如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面积相等,其中错误的结论个数是( )


A.3个 | B.2个 | C.1个 | D.0个 |
如图,点E是 Rt△ABC、 Rt△ABD 的斜边AB的中点,AC=BC,∠DBA=20°,则∠DCE的度数是( )


A.25° | B.30° | C.35° | D.40° |