- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- + 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,DE=3BE,点P,Q分别在BD,AD 上,则AP+PQ的最小值为:


A.2![]() | B.![]() | C.2![]() | D.3![]() |
如图,由8个大小相等的小正方形构成的图案,它的四个顶点 E,F,G,H分别在矩形ABCD的边AB,BC,CD,DA上,若AB=4,BC=6,则DG的长是______.

如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为6,
的顶点都在格点.
求每个小矩形的长与宽;
在矩形网格中找一格点E,使
为直角三角形,求出所有满足条件的线段AE的长度.
求
的值.







如图所示,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点,若AB=2,AD=4,则图中阴影部分的面积为____.

如图,点E是矩形ABCD的AB边上任意一点,点F是AD边上一点,∠EFC=90°,图中一定相似的三角形是( )


A.①与② | B.③与④ | C.②与③ | D.①与④ |
如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F,G,求证:PF+PG=AB.

如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.

在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;
(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,按图示方式将两张纸片任意叠合后,判断重叠四边形的形状,并证明;
(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.

(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;
(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,按图示方式将两张纸片任意叠合后,判断重叠四边形的形状,并证明;
(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.
