- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- + 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图所示,一个圆柱高为8cm,底面圆的半径为5cm,则从圆柱左下角A点出发.沿圆柱体表面到右上角B点的最短路程为( )


A.![]() | B.![]() | C.![]() | D.以上都不对 |
某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?

如图,将一根
长的细木棒放入长、宽、高分别为
、
和
的长方体无盖盒子中,则细木棒露在盒外面的最短长度是( )






A.4cm | B.5cm | C.6cm | D.7cm |
如图,有一圆柱,它的高等于8cm,底面直径等于4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约是(π取3)________.

在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为 ( )
A.13 m | B.12 m | C.4 m | D.10 m |
2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图).如果大正方形的面积是100,小正方形的面积是4,直角三角形较短的直角边长为
,较长的直角边长为
,那么
的值是_________ .




如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为( )


A.10cm | B.![]() | C.![]() | D.9cm |
如图所示,圆柱体的底面周长为20cm,高
为10cm,
是上底面的直径,一只蚂蚁从点
出发,沿着圆柱的侧面爬行到点
,则爬行的最短路程为______cm.





如图①,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1、l2、l3、l4上,EG过点D且垂直于l1于点E,分别交l2、l4于点F、G,EF=DG=1,DF=2.

(1)AE=________,正方形ABCD的边长=________;
(2)如图②,将∠AED绕点A顺时针旋转α°得到∠AE′D′,且0°<α<90°,点D′在直线l3上,以AD′为边在E′D′左侧作菱形AD′C′B′,使点B′、C′分别在直线l2、l4上.
①写出∠B′AD′与α的函数关系并给出证明;
②若α=30°,求菱形AD′C′B′的边长.

(1)AE=________,正方形ABCD的边长=________;
(2)如图②,将∠AED绕点A顺时针旋转α°得到∠AE′D′,且0°<α<90°,点D′在直线l3上,以AD′为边在E′D′左侧作菱形AD′C′B′,使点B′、C′分别在直线l2、l4上.
①写出∠B′AD′与α的函数关系并给出证明;
②若α=30°,求菱形AD′C′B′的边长.