- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- + 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在△ABC和△DEC中,∠ACB=∠ECD=90°,AC=BC=12,DC=EC=5.当点

A.C、D在同一条直线上时,AF的长度为_______. |

如图,小明同学为了测量电视塔OC的高度,发现电视塔在某一时刻的塔影一部分OA在地面,还有一部分AP在坡度为
的山坡上,且O、A、B在同一直线上,并测得OA=50m,AP=20m,在P处测得塔顶C的仰角为45°,求电视塔OC的高度(结果保留根号).


如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰直Rt△ADE,…,依 此类推,第10个等腰直角三角形的腰长是________.


如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为( )


A.20dm | B.25dm | C.30dm | D.35dm |
有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图①,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了图②,如果继续“生长”下去,它将变得“枝繁叶茂”,则“生长”了2 014次后形成的图形中所有正方形的面积和是( )


A.2 012 | B.2 013 | C.2 014 | D.2 015 |
如图,小刚想知道学校旗杆的高度,他发现旗杆顶端A处的绳子垂到地面B处后还多2米
当他把绳子拉直并使下端刚好接触到地面C处,发现绳子下端到旗杆下端的距离为6米,请你帮小刚求出旗杆的高度AB长.

