- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- + 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
探究题:如图,在等腰三角形ABC中,AB=AC,其底边长为8 cm,腰长为5 cm,一动点P在底边上从点B出发向点C以0.25 cm/s的速度移动,请你探究:当点P运动多长时间时,点P与顶点A的连线PA与腰垂直.

如图,在一个长方形草坪ABCD上,放着一根长方体的木块,已知
米,
米,该木块的较长边与AD平行,横截面是边长为1米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是______米





如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,
(1)求证:△ACE≌△BCD;
(2)若AE=3,AD=2,求DE的长度.
(1)求证:△ACE≌△BCD;
(2)若AE=3,AD=2,求DE的长度.

如图,Rt△ABC中,∠C=90°,AC=8,BC=6.
(1)尺规作图:作△BAC的角平分线AD(保留作图痕迹,不写作法);
(2)求AD的长.
(1)尺规作图:作△BAC的角平分线AD(保留作图痕迹,不写作法);
(2)求AD的长.

我们规定:三角形任意一条边的“线高差”等于这条边与这条边上高的差.如图1,△ABC中,CD为BA边上高,边BA的“线高差”等于BA-CD,记为h(BA).
(1)如图2,若△ABC中AB=AC,AD⊥BC垂足为D,AD=6,BD=4,则h(BC)=_______;
(2)若△ABC中,∠B=90°,AB=6,BC=8,则h(AC)= ________;
(3)如图3,△ABC中, AB=21,AC=20,BC=13,求h(AB)的值.

(1)如图2,若△ABC中AB=AC,AD⊥BC垂足为D,AD=6,BD=4,则h(BC)=_______;
(2)若△ABC中,∠B=90°,AB=6,BC=8,则h(AC)= ________;
(3)如图3,△ABC中, AB=21,AC=20,BC=13,求h(AB)的值.



如图,是一块长、宽、高分别是6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一顶点A处,沿着长方体表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短距离路径的长为_____ .

在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____ cm.(结果保留π)
