- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- + 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读并填空:
寻求某些勾股数的规律:
⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:
,我们把它扩大2倍、3倍,就分别得到
和
,……若把它扩大11倍,就得到 ,若把它扩大n倍,就得到 .
⑵对于任意一个大于1的奇数,存在着下列勾股数:
若勾股数为3,4,5,因为,则有
;
若勾股数为5,12,13,则有
;
若勾股数为7,24,25,则有 ;……
若勾股数为m(m为奇数),n, ,则有m2= ,用m来表示n= ;
当m=17时,则n= ,此时勾股数为 .
⑶对于大于4的偶数:
若勾股数为6,8,10,因为
,则有……请找出这些勾股数之间的关系,并用适当的字母表示出它的规律来,并求当偶数为24的勾股数.
寻求某些勾股数的规律:
⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:



⑵对于任意一个大于1的奇数,存在着下列勾股数:
若勾股数为3,4,5,因为,则有

若勾股数为5,12,13,则有

若勾股数为7,24,25,则有 ;……
若勾股数为m(m为奇数),n, ,则有m2= ,用m来表示n= ;
当m=17时,则n= ,此时勾股数为 .
⑶对于大于4的偶数:
若勾股数为6,8,10,因为

王老师在一次“探究性学习”课中,设计了如下数表:
(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:
a=_______,b=________,c=_______.
(2)猜想:以a,b,c为边的三角形是否为直角三角形?并证明你的猜想?
(3)请你观察下列四组勾股数:(3,4,5);(5,12,13);(7,24,25);(9,40,41),分析其中的规律,直接写出第五组勾股数_______.
n | 2 | 3 | 4 | 5 | … |
a | 22-1 | 32-1 | 42-1 | 52-1 | … |
b | 4 | 6 | 8 | 10 | … |
c | 22+1 | 32+1 | 42+1 | 52+1 | … |
(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:
a=_______,b=________,c=_______.
(2)猜想:以a,b,c为边的三角形是否为直角三角形?并证明你的猜想?
(3)请你观察下列四组勾股数:(3,4,5);(5,12,13);(7,24,25);(9,40,41),分析其中的规律,直接写出第五组勾股数_______.
阅读下面材料:
勾股定理的逆定理:如果是直角三角形的三条边长 a,b,c,满足 a²+b²=c²,那么这个三角形是直角三角形.
能够成为直角三角形三条边长的正整数,称为勾股数.例如:3²+4²=5²,3、4、5 是一组勾股数.
古希腊的哲学家柏拉图曾指出,如果 m 表示大于 1 的整数,a=2m,b=m²﹣1, c=m²+1,那么 a,b,c 为勾股数,你认为正确吗?如果正确,请说明理由, 并利用这个结论得出一组勾股数.
勾股定理的逆定理:如果是直角三角形的三条边长 a,b,c,满足 a²+b²=c²,那么这个三角形是直角三角形.
能够成为直角三角形三条边长的正整数,称为勾股数.例如:3²+4²=5²,3、4、5 是一组勾股数.
古希腊的哲学家柏拉图曾指出,如果 m 表示大于 1 的整数,a=2m,b=m²﹣1, c=m²+1,那么 a,b,c 为勾股数,你认为正确吗?如果正确,请说明理由, 并利用这个结论得出一组勾股数.
能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.
(1)试找出它们的共同点,并证明你的结论.
(2)写出当a=17时,b,c的值.
(1)试找出它们的共同点,并证明你的结论.
(2)写出当a=17时,b,c的值.
3,4,5 | 32+42=52 |
5,12,13 | 52+122=132 |
7,24,25 | 72+242=252 |
9,40,41 | 92+402=412 |
… | … |
17,b,c | 172+b2=c2 |
能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.

(1)试找出它们的共同点,并证明你的结论.
(2)写出当a=17时,b,c的值.

(1)试找出它们的共同点,并证明你的结论.
(2)写出当a=17时,b,c的值.