- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- + 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的边长为
,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x与y的数量关系是_____.


勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____ .

如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则正方形a、b、c、d、e、f、g面积的和是( )cm2.


A.64 | B.81 | C.128 | D.192 |
已知:整式
,整式
.
尝试: 化简整式
.
发现:
,求整式
.
联想:由上可知,
,当n>1时
为直角三角形的三边长,如图.填写下表中
的值:



尝试: 化简整式

发现:


联想:由上可知,




直角三角形三边 | ![]() | ![]() | ![]() |
勾股数组Ⅰ | / | 8 | |
勾股数组Ⅱ | ![]() | / | |
生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为8cm,则正方形A、B、C、D的面积和是_____cm2.
