- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,BD平分∠ABC,E是AB中点,连接DE,则DE的长为( )


A.![]() ![]() | B.2 | C.![]() | D.![]() |
如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.

如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3 cm,BC=2 cm,则EF=_________,FG=_________,EG=_________.

一个三角形最初的一个顶点为A,把它先向下平移4个单位长度时的位置记为B,再向左平移3个单位长度时的位置记为C,则由A,B,C三点所组成的三角形的周长为 ( )
A.7 | B.14 | C.12 | D.15 |
如图,在四边形ABCD中,P是BC边上一点,∠A=∠B=90º,E为AB的中点,连接DP,EP.若FG为△DPE的中位线,AB=AD=4,则FG=___________.

某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要( )


A.450a元 | B.225a元 | C.150 ![]() | D.300a元 |