- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,∠ABC=90°,AB=
BC,∠ABC的平分线BD交过点C且平行AB的直线于D点;AE⊥BD交BD于E点,连接CE并延长,交过A点且平行BC的直线于F点,AD与CF交于O点.现得到如下两个结论:①∠DAE=22.5°;②DE=(2-
)BE;

请帮助判断结论的真假,并说明你的理由.



请帮助判断结论的真假,并说明你的理由.
如图,在四边形ABCD中,AB∥DC,∠B=900,连接AC∠DAC=∠BA

A.若BC=4cm,AD=5cm,则AB= |

如图,已知线段a和∠EAF,点B在射线AE上 . 画出△ABC,使点C在射线AF上,且BC=a.
(1)依题意将图补充完整;
(2)如果∠A=45°,AB=
,BC=5,求△ABC的面积 .
(1)依题意将图补充完整;
(2)如果∠A=45°,AB=


我国古代伟大的数学家刘徽将直角三角形分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图,若a=4,b=6,则该直角三角形的周长为( )


A.18 | B.20 | C.24 | D.26 |