- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=90°,AC=6,BC=8.

(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)
(2)求S△ADC: S△ADB的值.

(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)
(2)求S△ADC: S△ADB的值.
(1)问题发现:如图1,
和
均为等边三角形,点
在
的延长线上,连接
,求证:
.

(2)类比探究:如图2,
和
均为等腰直角三角形,
,
点在边
的延长线上,连接
.请判断:①
的度数为_________.②线段
之间的数量关系是_________.
(3)问题解决:在(2)中,如果
,求线段
的长.







(2)类比探究:如图2,








(3)问题解决:在(2)中,如果


如图,将长为
cm的弹性绳放置在直线
上,固定端点
和
,然后把中点
竖直向上拉升
至点
,则拉长后弹性绳的长为________________.








如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点C,B不重合),连接AP,延长BC至点Q,使得∠PAC=∠QAC,过点Q作射线QH交线段AP于H,交AB于点M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示线段QC和BM之间的数量关系,并证明.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示线段QC和BM之间的数量关系,并证明.

如图,在等腰直角
中,
,
是斜边
的中点,点
、
分别在直角边
、
上,且
,
交
于点
.则下列结论:①图形中全等的三角形只有两对;②
的面积等于四边形
面积的2倍;③
;④
.其中正确的结论有_______________________________(填序号)
















