- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,以Rt△ABC的三边分别作正方形Ⅰ、Ⅱ、Ⅲ,已知正方形Ⅰ与正方形Ⅱ的面积分别为25和9,则正方形Ⅲ的面积为( )


A.4 | B.8 | C.16 | D.34 |
如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于( )


A.2π | B.4π | C.8π | D.16π |
如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.

(1)在图1中以格点为顶点画一个面积为5的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、
、
;
(3)如图3,A、B、C是小正方形的顶点,求∠ABC.

(1)在图1中以格点为顶点画一个面积为5的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、


(3)如图3,A、B、C是小正方形的顶点,求∠ABC.
如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为( )


A.14cm | B.15cm | C.24cm | D.25cm |
如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点分别在正方形网格的格点上.
(1)计算边AB、BC、AC的长.
(2)判断△ABC的形状,并说明理由.
(1)计算边AB、BC、AC的长.
(2)判断△ABC的形状,并说明理由.

如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是( )


A.1 | B.![]() | C.![]() | D.2 |
如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )


A.直角三角形 | B.锐角三角形 |
C.钝角三角形 | D.以上答案都不对 |