- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”,“赵爽弦图”是在下列哪部著作中记载的?( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且量得BF=12cm.求:(1)AD的长;(2)DE的长.

如图,四边形ABCD中,AD=6,AB=10,BC=15,CD=17,∠BDA=90°,

(1)试证明:BD⊥BC;
(2)计算四边形ABCD的面积.

(1)试证明:BD⊥BC;
(2)计算四边形ABCD的面积.
如图,正方形
的边长为
,其面积标记为
,以
为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为
,
按照此规律继续下去,则
的值为________.








如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+2S2+2S3+S4=_____.

如图,已知长方体的长AC=3cm,宽BC=2cm,高AA′=5cm.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?
