- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是( )


A.121 | B.144 | C.169 | D.196 |
如图1,以直角三角形的各边边边分别向外作正三角形,再把较小的两张正三角形纸片按图2的方式放置在最大正三角形内.若知道图中阴影部分的面积,则一定能求出( )


A.直角三角形的面积 | B.较小两个正三角形重叠部分的面积 |
C.最大正三角形的面积 | D.最大正三角形与直角三角形的面积差 |
一个长方形抽屉长12厘米,宽9厘米,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )
A.15厘米 | B.13厘米 | C.9厘米 | D.8厘米 |
如图,Rt△ABC中,∠B=90°,BC=4,AC=5,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________.

用四个全等的直角三角形拼成如图一个大正方形ABCD和一个小正方形EFGH,这就是著名的“赵爽弦图”.在2002年北京召开的国际数学家大会就用这个弦图作为会标.若AB=10,AF=8,则小正方形EFGH的面积为_____.



小米在一个长方形的水池里游泳,长方形的长、宽分别为30米,40米,小米在水池中沿直线最远可以游( )
A.30米 | B.40米 | C.50米 | D.60米 |