- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
据我囯古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三,股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5; 5,12,13; 7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股
,弦
;勾为5时,股
,弦
;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24=__________;弦25=___________.
(2)如果勾用
(
,且
为奇数)表示时,请用含有
的式子表示股和弦,则股=________;弦=_______.
(3)继续观察①4,3,5;②6,8,10;③8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用
(
为偶数且
)的代数式来表示直角三角形的另一条直角边和弦的长.
(应用举例)
观察3,4,5; 5,12,13; 7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股




请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24=__________;弦25=___________.
(2)如果勾用




(3)继续观察①4,3,5;②6,8,10;③8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用



如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点
表示的数是-2,
,若以点
为圆心、
的长为半径画弧,与数轴交于点
(点
位于点
右侧),则点
表示的数为________.









如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_________

如图所示,在数轴上以-1表示的点为圆心,以直角三角形的斜边为半径作出一条圆弧(虚线),该圆弧与数轴交于点
,点
所表示的数为
,则
的值为( )






A.![]() | B.![]() | C.![]() | D.![]() |
我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若
,
,则长方形的面积为______.


