- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形A、B、C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )


A.16 | B.12 | C.15 | D.18 |
如图,Rt△ABC中,∠ACB=90°,AB=4,分别以AC和BC为边,向外作等腰直角三角形△ACD和△BCE,则图中的阴影部分的面积是_____.

下列说法正确的是( )
A.一个三角形的三边长分别为:a,b,c,且a2﹣b2=c2,则这个三角形是直角三角形 |
B.三边长度分别为1,1,![]() ![]() |
C.三边长度分别是12,35,36的三角形是直角三角形 |
D.在一个直角三角形中,有两边的长度分别是3和5,则另一边的长度一定是4 |
在如图所示的网格中,每个小正方形的边长均为1个单位.

(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形;
(2)请你在图2中画一个以格点为顶点,一条直角边长为
的直角三角形.

(1)请你在图1中画一个以格点为顶点,面积为6个平方单位的等腰三角形;
(2)请你在图2中画一个以格点为顶点,一条直角边长为

如图,在Rt△ABC中,点E在AB上,把这个直角三角形沿CE折叠后,使点B恰好落在斜边AC的中点O处,若BC=3,则折痕CE的长为( )


A.![]() | B.2![]() | C.3![]() | D.6 |